详细介绍:
科华蓄电池生产厂家-科华蓄电池
科华蓄电池12V7AH
解决科华UPS蓄电池充电缺陷;首先,在本系统中单节蓄电池的充电是独立进行的,在每个充电模块完全可以结合每节蓄电池的运行参数及运行状态科学的对每解蓄电池进行充放电,避免了因蓄电池参数不一致引起过充电,欠充电,以及过放电等问题的发生,保证了电池的使用寿命。 其二,在本系统中,每节蓄电池的检测和充电处于同一模块中,有机的结合在一起。一方面电池检测部分可以通过控制充电部分轻易实现电池电压、内阻的检测。另一方面充电部分又可以根据检测单元测得参数(包括单电池内阻、电压、温度、PH值)对电池进行合理的充电。真正实现了按蓄电池充电曲线结合其运行状态进行管理的思路。 其三,我们知道现在小容量高频开关电源的实现是很容易的,对器件和工艺不需要很高的要求。同时也具有很高的可靠性。大家可以对比一下在方案一中以现今普遍采用220V/10A模块比较,其输出功率为最高电压280V*10A=2800W,而在蓄电池容量超过800AH系统中我们还需要采用输出电流为20A的模块,其输出功率更高达5600W,大的输出容量自然对高频器件和制造工艺提出了更高的要求,同时使可靠性降低。 而在方案二中以可能采用的大电池容量来讲如采用2V/1000AH电池那么单模块容量为 0.1C(10小时充电率)A*2.5V(蓄电池最高电压)=250W式中C为蓄电池容量, 而如果采用300AH/12V蓄电池系统中,单模块容量为 0.1C(10小时充电率)A*15V(蓄电池最高电压)=450W *注意超过300AH的蓄电池多为2V每节 可以看出在方案二中单模块容量远远小于方案一中的单模块容量,所以实现起来非常容易,对器件和制造工艺没有太高要求,可靠性也就得到了提高。 大家应该注意到本方案二中没有备分的概念,其原因之一是本身小容量充电设备的高可靠性使得它不需要备分,原因之二在于热插拔抽出式结构的采用,和二极管D*的存在在更换检修模块和电池时只是系统的电压会降低一些(在允许范围内),将不会影响系统的正常运行,因此本系统不需要额外的冗余备分。科华蓄电池关于保管 1.保管时请注意温度不要超过-20℃~+40℃范围 2.保管电池时必须使电池在完全充电状态下进行保管。由于在运输途中或保存期内因自放电会损失一 部分容量,使用时请补充电。 3.长期保管时,为弥补保管期间的自放电, 请进行补充电。 在超过40c条件下保管时,对电池寿命有很坏影响,请避免! 4.请在干燥低温,通风良好的地方进行保管。 ups电池 5.如在保管或转移过程中电池包装不慎被水淋湿,应立即除掉包装纸箱,以避免被水打湿的纸箱成为 导体造成电池放电或烧坏正极端子。 关于日常检查及维护保管 1.定期对电池进行检查,如发现有灰尘等外观污染情况时,请用水或温水浸湿的布片进行清扫。不要 用汽油、香蕉水等有机溶剂或油类进行清洗,另外请避免使用化纤布。 2.浮充时,电池充电过程中总电压或指示盘上电压表的指标值偏离下表所示基准值时(±0.05v/单 格)应调查原因并作处理。 关于电池寿命的说明 即使ups使用的是同样的电池技术,不同厂家的电池寿命大不一样, 这一点对用户很重要,因为更换电池的成本很高(约为ups售价的30%)。电池故障会减小,是非常烦人的事情。 电池温度影响电池可靠性 温度对电池的自然老化过程有很大影响。详细的实验数据表明温度每上升摄氏5度,电池寿命就下降10%,所以ups的设计应让电池保持尽可能的温度。所有在线式和后备/在线混合式ups比后备式或在线互动式运行要大时发热量( 所以前者要安装风扇),这也是后备式或在线互动式ups电池更换周期相对较长的一个重要原因。 电池充电器设计影响电池可靠性 电池充电器ups非常重要的一部分,电池的充电条件对电池寿命有很大影响。如果电池一直处于恒压或“浮”型电器充电状态,则ups 电池寿命能大程度提高。事实上电池充电状态的寿命比单纯储存状态的寿命长得多。因为电池充电能延缓电池的自然老化过程,所以ups无论运行还是停机状态都应让电池保持充电。 电池电压影响电池可靠性 电池是个单个的“原电池”组成,每一个原电池电压大约2伏,原电池串联起来就形成了电压较高的电池,一个12伏的电池由6个原电池组成,24 伏的电池由12个原电池组成等等。ups的电池充电时,每个串联起来的原电池都被充电。原电池性能稍微不同就会导致有些原电池充电电压比别的原电池高,这部分电池就会提前老化。只要串联起来的某一个原电池性能下降,则整个电池的性能就将同样下降。试验证明电池寿命和串联的原电池数量有关,电池电压就越高,老化的就越快。 ups容量一定时,设计时应尽可能让电池电压低,这样ups电池寿命就越长,对于电池电压一定时,应选择数量少电压原电池串联的电池,不要选择数量多电压低的原电池串联的电池。有些厂家ups的电池电压比较高,这是因为容量一定时,电压越高,电流就越小,就可选用较细的导线和功率较小的半导体, 从而降低ups成本。容量1kva左右的ups的电池电压一般为24 ̄96v。
科华蓄电池行业信息
解决科华UPS蓄电池充电缺陷;首先,在本系统中单节蓄电池的充电是独立进行的,在每个充电模块完全可以结合每节蓄电池的运行参数及运行状态科学的对每解蓄电池进行充放电,避免了因蓄电池参数不一致引起过充电,欠充电,以及过放电等问题的发生,保证了电池的使用寿命。 其二,在本系统中,每节蓄电池的检测和充电处于同一模块中,有机的结合在一起。一方面电池检测部分可以通过控制充电部分轻易实现电池电压、内阻的检测。另一方面充电部分又可以根据检测单元测得参数(包括单电池内阻、电压、温度、PH值)对电池进行合理的充电。真正实现了按蓄电池充电曲线结合其运行状态进行管理的思路。 其三,我们知道现在小容量高频开关电源的实现是很容易的,对器件和工艺不需要很高的要求。同时也具有很高的可靠性。大家可以对比一下在方案一中以现今普遍采用220V/10A模块比较,其输出功率为最高电压280V*10A=2800W,而在蓄电池容量超过800AH系统中我们还需要采用输出电流为20A的模块,其输出功率更高达5600W,大的输出容量自然对高频器件和制造工艺提出了更高的要求,同时使可靠性降低。 而在方案二中以可能采用的大电池容量来讲如采用2V/1000AH电池那么单模块容量为 0.1C(10小时充电率)A*2.5V(蓄电池最高电压)=250W式中C为蓄电池容量, 而如果采用300AH/12V蓄电池系统中,单模块容量为 0.1C(10小时充电率)A*15V(蓄电池最高电压)=450W *注意超过300AH的蓄电池多为2V每节 可以看出在方案二中单模块容量远远小于方案一中的单模块容量,所以实现起来非常容易,对器件和制造工艺没有太高要求,可靠性也就得到了提高。 大家应该注意到本方案二中没有备分的概念,其原因之一是本身小容量充电设备的高可靠性使得它不需要备分,原因之二在于热插拔抽出式结构的采用,和二极管D*的存在在更换检修模块和电池时只是系统的电压会降低一些(在允许范围内),将不会影响系统的正常运行,因此本系统不需要额外的冗余备分。 科华蓄电池行业信息
IGBT整流技术是随电力电子技术的发展而产生的一种新型的整流技术。采用IGBT技术的UPS,可以达到双向保护的目的,既保护负载,也保护电网。
随着科技经济的发展,能源和环境问题日益突出,也就要求UPS行业要向“绿色、低碳”发展,然而真正的绿色“低碳”UPS电源,表现为谐波电流小对电网的电力谐波污染小,UPS运行的效率高,减少损耗。
低碳发展(或低碳经济)是逐渐成为全球大趋势,在全球范围内被广泛认为是人类未来发展的唯一道路。“哥本哈根会议”后,中国政府陆续出台了一系列的“低碳”环保政策措施,2010年更是被戏称为“中国低碳元年”。随着政策和消费大环境的变化,“绿色UPS”及“绿色UPS技术”成为各领军UPS市场争夺得战略高地,无铅生产、DSP技术、IGBT整流技术、APFC技术等都得到了长足的发展和运用。
理想的UPS对电网应当是呈现纯阻性,也就是说,UPS的功率性因数最好是1,这样它对于电网就没有任何的污染.但现实情况是,大多数的UPS普遍采用了50Hz的低频可控硅整流器,对市电产生了大量的一个谐波反馈污染.摆在所有用户面前的问题是治理谐波污染,就像我们治理化工厂排放污水一样.谐波造成的危害很大。
谐波危害主要在于:
1、使电动机产生附加损耗和发热、产生脉动转矩和噪音。使电力变压、使电动机产生附加损耗和发热、产生脉动转矩和噪音。使电力变压器线圈发热,加速绝缘老化,寿命缩短、引起附加损耗和噪音。
2、对断路器、漏电保护器、继电器等保护、自控装置产生干扰,造成误动作。
3、使照明设施寿命缩短。
4、造成电流表、电压表、功率表、电能表测量误差。
5、对临近的通讯线路产生静电干扰和电磁干扰。
6、引起配电系统静电补偿电容器发生串/并联谐振。
7、使配电线路损耗增大、发热、缩短绝缘寿命,甚至引起短路、火灾。
8、由于谐波,使电压突变造成电子设备损坏、出现误动作,影响计算机程序正常运行。造成数据丢失,甚至损坏硬件,引起楼宇自动化、消防报警系统、安全防范系统误动作,甚至无法工作。
目前市场上关于治理UPS谐波污染的方式,主要有:6脉冲整流器+输入滤波器;12脉冲整流器;12脉冲整流器+输入滤波器;有源滤波器.这些方式都有一个共同的缺点,那就是先污染后治理.由于UPS采用的是可控硅整流器的结构,不可避免地会造成谐波污染,然后用户被迫再花费大笔资金来治理谐波污染.如果UPS不产生或很少产生谐波污染,那用户就无须花钱来治理它了。
如果要达到同样的指标,还需要加众多的选件例如输入滤波器,12脉冲整流器等,每个额外选件都会进一步降低UPS的整体效率。所以,12脉冲整流器,会降低效率2%,有源滤波器会使系统效率降低4%,因此在实际测量时许多12脉冲UPS的整机效率尚不足88%。
科华蓄电池的性能特点:
当蓄电池硫酸铅大量堆积时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池是小和损坏的主要机理就是电池本身无法避免的硫化。铅酸恒力电池充放电过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原成为硫酸铅。而硫酸铅是一种容易结晶的物质,当电池中电解溶液的硫酸浓度过高或静态闲置时间过长时,结成小晶体,这些小晶体再吸引周围的硫酸铅,就像滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成电极板工作面积下降,这一现象叫硫化,也就是常说的老化,硫酸铅是一种绝缘体,它的形成必将对蓄电池的充放电性能产生很大的影响。
科华蓄电池的检查事项:
1、检查蓄电池在支架上的固定螺栓是否拧紧,安装不牢靠会因行车震动而引起壳体损坏。另外不要将金属物放在蓄电池上以防短路。
2、时常查看极柱和接线头连接得是否可靠。为防止接线柱氧化可以涂抹凡士林等保护剂。 3、不可用直接打火(短路试验)的方法检查蓄电池的电量这样会对蓄电池造成损害。
4、普通铅酸蓄电池要注意定期添加蒸馏水。干荷蓄电池在使用之前最好适当充电。至于可加水的免维护蓄电池并不是不能维护适当查看必要时补充蒸馏水有助于延长使用寿命。 5、蓄电池盖上的气孔应通畅。蓄电池在充电时会产生大量气泡若通气孔被堵塞使气体不能逸出当压力增大到一定的程度后就会造成蓄电池壳体炸裂。
6、在蓄电池极柱和盖的周围常会有黄白色的糊状物,这是因为硫酸腐蚀了根柱、线卡、固定架等造成的。这些物质的电阻很大,要及时清除。
7、当需要用两块蓄电池串联使用时蓄电池的容量最好相等。否则会影响蓄电池的使用寿命。
科华蓄电池的正确使用:
VRLA电池内部接线柱、同极的连接片以及电极接头的腐蚀而断裂的现象也比开口式电池更常发生。这些故障都导致容量损失。这使使用单位不易掌握VRLA电池的耐久性和失效问题。实践证明,VRLA电池端电压与放电能力无相关性,VRLA电池和电池组在运行过程中,随着使用时间的增加必然会有个别或部分电池因内阻变大,呈退行性老化现象,实践证明,整组电池的容量是以状况最差的那一块电池的容量值为准,而不是以平均值或额定值(初始值)为准,当电池的实际容量下降到其本身额定容量的90% 以下时,电池便进入衰退期,当电池容量下降到原来的80%以下时,电池便进入急剧的衰退状况,衰退期很短,而且蓄电池组都是串连起来,如果有一节发生问题,则整组都将失效,这时电池组已存在极大的事故隐患。
科华蓄电池电极的判断方法:
1.采用万用表电压挡测量 可将万用表拨至直流挡位上,两表笔分别跨接在蓄电瓶两电极上,此时若电瓶显示出正常电压值,则证明红色表笔所触的电极为电瓶正电极.而黑表笔处则为负电极。有时测得电瓶无正常电压存在,则可测量电瓶的弱微存电量加以判断。当两表笔碰触电瓶电极后,表针若向右微微晃动,即证明红笔处为电瓶正电极.黑表笔处为负电极。但如果万用表指针向左晃动(表针反打),则证明红笔所触及处为电瓶的负电极。
2.采用导线短路进行识别 将两根铜芯电源线分别跨接在待测定的旧电瓶电极处,再将正常配置好的电解液(浓盐水)倒入一只玻璃茶杯内,将电源线两端分别插入茶杯内,并各自搁放在玻璃杯两侧边沿(两线在杯中不能相碰),然后观察各自引线端在电解液中的冒泡情况,如果某一电线线端气泡上泛的小泡明显而又较多时.则说明电源线连接电瓶的一端为负电极,气泡上泛少而又不明显端则为电瓶的正电极。
|