智能电池利用内部电子线路来测量、计算和存储电池数据,它使电源的使用更加可预测。而且,智能电池还有一个重要优点,那就是能防止意外的系统停机。
一个基本的SBS系统由以下部分组成:系统管理总线(SMBus),智能电池充电器和智能电池。
SBS的模块化特性使设计闭环电池充电系统变的非常容易,这样的系统允许采用电池组独立充电器(智能充电器),最大限度地降低了硬件和软件的非重复工程(NRE)性成本,并促成了坚固的系统,这对高可靠性电池备份应用尤其重要。而集成到电池组中的高准确度气压计则能一直准确地监视电池,甚至电池不在系统中时也一样。该气压计按照电池的实际容量值进行了校准,因此消除了偏差,确保了准确度。
智能电池充电器的主要功能是为智能电池充电提供电压源和电流源。智能电池通过SMBus接口与智能充电器通信,并可选择与主机通信。为了防止由于SMBus功能丧失而过充电,监视计时器持续运行以监视智能电池与充电器的通话频度。如果电池无动作的时间超过3分钟,那么充电器就暂停并等待电池再次请求充电。此外,电池还可以通过强制停机功能来控制充电器,这样可以绕过SMBus,以提供冗余级别并让充电器知道电池是确实存在的。
与固定独立充电器相比,智能电池充电器有如下优点。
①
真正即插即用,不受电池化学特性和电池配置影响。任何智能电池组都可与任何智能电池充电器配合。具有不同化学特性、配置,甚至不同充电算法的电池都可以不加修改换用充电器电路。
② 内置安全功能。SBS标准提供监视计时器和一个处在电池和充电器之间的特别“安全信号”接口。
③ 可靠的电池检测系统。
④ 自动充电管理,无须主机。
⑤ 无须主机干预的闭环充电系统。主机可根据需要收集电量测量信息。
LTC1760双智能电池系统管理器
LTC1760是一个高度集成的三级电池充电器和选择器,用于使用双智能电池的产品。它是一个降压开关拓扑电池充电器,具有符合智能电池标准定义的多种功能和其他新增功能,如输入限流和安全限制,等等。三个SMBus接口使LTC1760能实现诸如跟踪两个电池的内部电压和电流之类的伺服功能,并允许一个SMBus主机监视任一电池的状态。这种伺服技术能使充电器的准确度同电池内部电压和电流测量值只有±0.2%的误差。
传统上,双电池系统是顺序放电系统,允许顺序消耗电池电量,以简单地延长总的电池工作时间。LTC1760采用了专有模拟控制技术,可允许安全地对两个电池并行充电或放电。这种结构使充电速度提高了50%,电池工作时间延长了10%。此外,并行放电不仅增强了电流能力,而且还降低了I2R损耗并改善了在极高负载条件下的电压调节能力。降低I2R损耗和改善电压调节都延长了时序解决方案的总放电时间。
LTC1760的主要特点
① 独立3级充电器轮询电池的充电要求并监视由电池内部电量测量所确定的实际电流和电压(误差为±0.2%),实现快速、安全和彻底地充电。
② 快速充电模式可以用来进一步缩短充电时间。
③ 支持电池查验以实现气压计校准。
④ 3个电源通路FET二极管允许安全和低损耗地从DCIN和两个电池同时放电。
⑤ 两个FET二极管实现两个电池同时安全、低损耗地放电。
⑥ 硬件可编程电流和电压安全限制以及很多其他安全功能用以补充电池的内部保护电路。
LTC1760虽然很精密,但是非常容易使用。在任何给定设计中仅需确定4个关键参数:输入限流检测电阻RICL,限流电阻RILIM和匹配充电电流检测电阻RSENSE,限压电阻RVLIM,短路保护电阻RSC。
LTC1760加上一些智能电池和一个AC适配器,就可组成一个简单系统。
输入限流检测电阻RCL
如图2所示,这个电路限制充电电流以防止系统功率升高时交流适配器过载。要设定输入电流限制,最重要的就是要最小化墙式配适器的额定电流。限流电阻可以通过下两式来计算。
图2 输入限流感应电阻电路
LIM=适配器最小电流值-(适配器最小电流值×5%)(1)
RCL=100mV/ILIM (2)
不过,交流适配器可以有至少+10%的限流裕度,因此常常可以简单地将适配器限流值设定为实际适配器额定值。
限流电阻RILIM
RILIM电阻有两个作用。首先,它告诉LTC1760的SMBus接口,充电器可以供给电池的最大可允许电流,任何超过这个限度的值都会被限定值所取代。第二个作用是让PWM充电器的满标度电流与SMBus接口的满标度限流值同步。
限压电阻RVLIM
VLIM引脚到GND之间连接的外部电阻值可以决定5个充电器输出限压值中的任一个(见表3)。这种用硬件实现限压值的方法是一种比较安全的措施,它是不能被软件方式所取代的。
短路保护电阻RSC
每条电源通路都由两个背对背的PFET组成,这两个PFET与短路检测电阻RSC串联。电池电源通路(PowerPathTM)开关驱动器等效电路如图3所示。
短路保护功能可在电流模式和电压模式下工作。如果输出电流超过短路比较器门限的时间多于15ms,那么就断开所有电源通路PFET开关,并将POWER_NOT_GOOD位置位。类似地,如果电压降至低于3V的时间多于15ms,那么也将断开所有电源通路开关,POWER_NOT_GOOD位同样被置位。去掉所有电源可将POWER_NOT_GOOD位复位。如果POWER_NOT_GOOD位被置位,那么充电也被禁止。
无需软件
基于LTC1760的充电器无需软件。在一开始的硬件样机中放入该集成电路将允许系统获得电池的充放电。不过在某些情况下,可以编写一些软件以便主机能够完成以下动作。
① 直接从智能电池(也就是作为气压计)收集“充电器状态”信息;
② 支持电池查验。
结论
智能电池系统提供先进的功能,只需最低限度的设计工作。LTC1760是非常全面的单芯片双智能电池系统的代表,简单易用,仅需要确定4个参数就能完成一个完整的设计,而且不需要软件代码。该器件仅需最低限度的NRE工作,就可组成一个完整的独立电池充电器系统并正常工作。
蓄电池修复并不难。如对整组蓄电池(串联)同时进行修复难度就大(电池硫化的除外),只要电池组内有一节电池属物理损伤,使用修复仪器效果就不明显,但是要分开电池组,一节一节电池单独的进行修复,不仅可以检测电池损坏类型,也可以采取不同的方法进行修复,所以修复电池关键是修复单体电池(一般为
12V),下面就简单的介绍几种:
1.脉冲修复法:采用高频正负脉冲发生器,对电池不断的产生高低变频脉冲,其一可以具有溶解大硫酸铅的条件,其二是脉冲扰动,破坏了大硫酸铅继续生长的条件,这种方法克服了以往修复技术的局限性,具有快速性、约
8-12 小时,修复效率高,耗电少,不会引起电池失水、正极板软化和改变电解液原结构等优点,对严重硫化的铅酸电池修复效果是过去的 3~4 倍,修复率达到 90%
以上,此技术的应用减少了电池的报废数量.
2.强电修复法:强电修复法就是采取充电时的持久高电压或大电流修复蓄电池的方法,多在脉冲修复法效果不明显时采用。其一、高电压修复法:这种方法主要是采取电池标称电压的1.3-1.5倍的充电电压修复电池,如36V蓄电池在充电电流不变或接近的条件下,采用48V的充电器进行充电,充电时间要掌握分寸,不易过长,否则电池会因析气发热。此方法对短路、极板软化程度不高的蓄电池具有一定的修复作用,但使用不当,对电池极板压点也会造成伤害。其二、大电流修复法:这种方法主要是采取高于平时充电电流1.5-2.0倍的充电电流来修复蓄电池,如20AH的蓄电池使用3
-4A的充电器进行充电,利弊与“高电压修复法”一样。
3.
全充全放电修复法:全充全放电修复法就是对蓄电池采取完全充满电后,再完全的放电修复蓄电池的方法。全充全放电修复法主要是对轻度损伤的蓄电池具有一定的修复作用,同时此方法还可以有效的激活电瓶深层的活性物质,提高蓄电池容量。如轻度硫化的电池,内阻较高的电池,此法的关键是放电一定要充分,并且是对每节单体电池进行单独的充分放电,全充全放电1-2次,蓄电池的容量一般都能得到提升。全充全放电修复法不得经常使用,最少半年使用一次,最多三个月使用一次。
4、
补水修复法:对蓄电池“失水”采取补水的方法便可修复,其目的是稀释浓度提高的硫酸正常进行电解反应。补水方法上较为简单,只用打开蓄电池上盖,可以看见有六个圆孔,向每个圆孔注射一定量的蒸馏水,再浸泡24小时以上就可以了。补水只可以补充蒸馏水,不可以添加其他成分的水,包括纯净水,因为其他成分的水中有各种金属分子,加入电瓶内后容易引起自放电而损坏电池。
5、 重新配组修复法:
电动车电池一般是由几节电池串联而成的电池组,电池坏损是多方面的,可能电池会同时存在几个方面的损伤:对于硫化的电瓶,修复后使用效果较好;但是对于极板软化以及断隔的电瓶,即时可以修复,因属物理硬伤,可再利用价值不大,修复后的使用时间也极短,再修复的效果将会更差。最好的方法就是把修复价值不大的电瓶“以旧换旧(换成容量还有80%以上的旧电池)”,再和其他剩余几节电池重新配组即可
2、 由于电池组件的电压较高,存在电击危险,因此在装卸导电连线时,应使用带绝缘包扎的工具;安装或搬运电池时,要戴绝缘手套、围裙和防护眼镜;电池在搬运过程中,防止碰撞冲击,不得扭动端柱和安全排气阀。严禁将工具、杂物或其它导电物品放在电池上。
3、 脏污的接线端子或连接不牢均可能引起电池打火,所以要保持接线端子连接处的清洁,并拧紧专用连接电缆(或铜排),使扭矩达到不同连接端子的规定值。操作时不得对端子产生非紧固所必须的其它应力。
4、 电池之间、电池组之间以及电池组与电源设备之间的连接应合理方便、电压降尽量小。不同规格、不同批次、不同厂家的蓄电池不能混用。安装末端连接件和接通电池系统前,应认真检查电池系统的总电压和正、负极性连接是否正确,电池间连接是否牢固。
5、 电池安装过程中要避免电池短接或接地。蓄电池组与充电器或负载连接时,应将电池组中一个端子导电连线断开,充电器或负载电路开关应位于“断开”位置,以防止短路,并保证连接正确,蓄电池的正极与充电器的正极连接,负极与负极连接。