当前位置:首页 >> 产品展示 >> 电子 >> 电池 >>恒力蓄电池厂商
恒力蓄电池厂商放大图片

产品价格:233   元(人民币)
上架日期:2015年8月20日
产地:广东
发货地:北京  (发货期:当天内发货)
供应数量:不限
最少起订:1只
浏览量:14
  暂无相关下载
其他资料下载:

         
蓄电池厂家直销

点击这里给我发消息
  详细说明  
品牌:恒力蓄电池产地:广东
价格:233人民币/只规格:12

简要说明:恒力蓄电池牌的恒力蓄电池厂商产品:估价:233,规格:12,产品系列编号:952

详细介绍:

  

恒力蓄电池厂商

 

恒力蓄电池参数

锂电池是一个需要大量资金投入的行业,一条年产2000万Ah生产线至少需要5000万元的投资;对于没有资金积累的电芯企业而言,唯有通过银行才能维持产能扩张。
然而,锂电电芯业务造血功能有限,电芯业务毛利率普遍在20%左右;扣除销售费用、财务费用、售后服务、设备折旧等,大部分企业销售净利率低于5%,甚至亏损。因此,没有集团背景的企业只能通过借新债偿旧债的形式,获得企业现金流。
大集团背景的电芯厂家,在销售策略上往往比较保守,对于下游客户资质选择苛刻;依靠自身发展的电芯厂则比较激进,侧重于销售增长。而这些锂电企业一旦放松对下游客户资质选择,必然会推升呆坏账率,从而增加现金流动困难。这也是导致企业负债率增加的一个重要原因。
另一方面,终端市场的风吹草动对上游电芯和电池材料企业所带来的影响也不可忽视。
近三年来,终端市场的需求变化给电芯厂带来了巨大的冲击。在珠三角一带,大部分电芯厂以铝壳为主,他们的下游客户集中在山寨手机制造商。苹果、三星等智能手机横空出世,对传统手机造成了强大冲击。
据调研数据表明,2011年山寨手机出货量2.55亿部。同比增长11.84%,相比前两年40%以上的增速大幅下滑;2012年出货量将下降至2.13亿部,同比下滑16.47%。2013年中国市场的智能手机出货量已经远远超过山寨手机的市场份额。这种变化,对我国铝壳电芯企业的盈利造成不利影响。
事实上,自2010年以来,智能手机时代已经开始逐渐取代功能手机之前的市场份额,苹果、三星的强势崛起,“中华酷联”也开始形成牢固的本土化品牌,剩下来的三线国产山寨手机市场也已经开始被瓜分殆尽。原来依靠山寨手机起家的国内铝壳电池企业已经是艰难度日,不少企业不是破产跑路就是被收购重组。
锂电电芯企业负债率的分化,可以反映出我国锂电池行业生态环境的恶劣。而近几年又处在央行信贷紧缩周期,那些没有集团背景的电芯企业,更容易陷入资金链断裂的危险境地,这也成为近几年以来一大批锂电电芯企业因为三角债而倒闭的重要原因之一。
“我国大部分锂电电芯产能属于低端重复,同质化竞争,往往通过价格战、延长账期获得客户。”沧州明珠塑料股份有限公司副总经理谷传明表示,行业账期问题的恶化与部分企业开展恶性竞争不无关系。
与此同时,国内的电芯厂面临着外患,韩国三星SDI为了获得市场份额,举全国之力在锂电电芯行业打响了持续的价格战。过去三年时间里,最典型的2.0Ah的18650电芯的价格已经降至一美元左右。这样带来的直接后果就是在经过一轮轮的价格战之后,国内电芯厂的产品毛利率一降再降。
“产能过剩,持续的价格战和不断延长的账期都让行业的三角债问题一步步滑向危险的深渊。”江西福斯特新能源科技有限公司总经理蔡栋认为,产能过剩是三角债得以固化的根本原因。

 

计算方法如下:


 


额定输出容量6KVA

输入电压范围176-276V

输入频率范围45-55Hz

输出电压范围220±0.
计算方法如下:
 
额定输出容量6KVA
输入电压范围176-276V
输入频率范围45-55Hz
输出电压范围220±0.2%V
请问该如何连接才是正确的 是不是16块电池串联 正极接负极一直到最后一个然后第一块电池正极和最后一个电池的负极接上机头就OK了?
 
所以,电池就正负正负正负(串联)···················然后第一块电池正极和最后一个电池的负极接上机头就OK了。
恒力蓄电池的主要性能:
恒力蓄电池采用独特的多元合金配方、利用进口鋳片设备和自主研发的板栅模具、通过严格的温度控制,板栅不仅厚度、重量均匀性好、浮充寿命长、自放电低。
●采用进口全自动电脑控制铅粉机,以严格的自动控制程序保证铅粉氧化度、颗粒的均匀性、稳定性,同时更与电池大电流放电特征相适应。
●铅膏是电池技术的核心。独特铅膏配方更好的满足了高功率深循环放电等多种性能需求,适用于浮充等领域,同时全自动的和膏系统及温度控制保证了铅膏的特性及稳定性。
●利用自主研发的技术改造进口涂片机,从而使得极板更均匀更适用于UPS电池极板的要求。
●采用高温高湿固化技术、温湿自动控制技术,通过精确的风向及流量设计,不仅在最大限度上保证了极板固化的效果,而且保证了每个点极板的均匀性,电池寿命比常规固化明显提高。
●采用定量加酸工艺,加酸精度达到0.1ml,充分保证了电池各单位之间及电池之间的均匀性。
同时,电解液的独特配方增强了电池的深循环能力。又因为采用进口的环氧胶,端头片及0型图进行组装,使电池更可靠。
●出厂前必须经过的多个充放电循环,使得更加均匀、更可靠。同时,100%的内阻,开闭路、密合度检测,进一步保证了出厂电池的品质。

 

恒力蓄电池参数

UPS电源的开机和使用注意事项
首先,引导注意:
电力步骤:
(a)首先到电源供应给负载的旁路模式;
(乙)在确认无输出短路和过载无情况下,不负载或无负载功率;
(C)在第二阶段对电力中断正常运行的基础上,测试电池逆变器是正常的;
(d)重新上市添加电气负荷运行测试案例电/逆变器正常运行负荷;
(五)每3合并/关闭开关配电箱1个,共合并/关闭5倍以上分钟,试验机是正常的。(注:不要使用电源的机器上做这个测试开关)
2电源安全性:第一次启动机器,手指的操作按下电源开关应立即离开开关,而是着眼于机器的启动条件,如果有异常响声,燃烧等不愉快的气味或烟雾,应立即关闭机器。注:引导大门被关闭或关闭,以防止意外伤害的电解电容和其他元件爆破!
3必要的指导:中型和大型机械的安装,调试及所需的专业工作人员的监督,或安装/调试通过电话制造商必须是专业技术人员全程指导,完成在线。
4每日开/关原理:本机应遵守的日常权力:一是无负载的电源,然后逐渐增加负荷的原则。休息日,应遵守:第一,然后慢慢关闭的原则,关闭机器的负荷。频繁的开/关的机会,以增加机器的故障率,所以第二天/工作只关闭/负载都可以!


 蓄电池的寿命有两种表达方法:一种为深循环使用的电池,另一种为浮充使用的'备用电源'电池。深循环使用的电池以深循环次数来表示其使用寿命,以0.8C10深度充放电循环使用的电池,其寿命达到1200次以上,而浮充使用的电池,年限可达到10~20年。蓄电池只有80%容量时认为寿命终止。
  
  实际使用寿命与设计使用寿命有很大差别,这主要取决于电池中水的损失情况。在设计条件下使用可达到设计寿命,而当外部条件如温度、充电电压、放电深度等变化超出设计要求时,实际使用寿命会大大低于设计寿命,实际使用容量也会低于设计容量。
  
  (2)放电率对电池实际可输出容量的影响
  
  电池容量C(Ah)等于放电电流(A)与电池电压达到下限值的放电时间(h)的乘积,而放电率(1/h)是实际放电电流(A)与电池标称容量(Ah)的比值。
  
  在UPS的实际运行中,市电掉电后,要求电池逆变承担全部的负载功率,放电率视后备时间的不同而有很大差别,例如标机在1Omin左右,维持时间很短,放电率很大,长延时机可达4h或8h,放电率很小。所以蓄电池的实际放电率并非蓄电池规格定义中的放电率,图5-1所示的放电曲线反映了不同的放电率对电池容量的影响。
  
  由图5-1中曲线可知,屯池的实际放电电流越小,电池的电压能维持的稳定时间越长,反之亦然。例如,对1OOHR电池组而言,当放电电流为5A时,放电率为5C,其输出电压维持在12V以上的时间长达10h以上,当电池电压下降到临界电压10.5V时,放电时间可达2Oh,电池释放的容量基本上是它的标称容量。若将放电电流增大至1OOA,放电率为1C,则输出电压维持在l2V以上的时间不到1Omin。当电池电压下降到临界电压时,可维持放电时间超过3Omin,实际放出的容量为左右,远低于标称容量1OOAh。
  
  电池组允许的放电临界电压值和实际可供利用的容量(AM都弓电池的放电电流大小有密切的关系。
  
  蓄电池所允许放电时间为电池在实际放电电流下进行放电时,电池电压从额定值下降到它所允许的临界电压时所用的时间。
  
  蓄电池可供使用的效率为它在实际放电电流下所能释放出的实际最大容量与它的额定容量的比值。
  
  要注意在不同的放电率情况下,电池端电压下降的临界值也在变化,放电率低时,例如0.01C时,实际释放的容量接近标称容量,所允许的电池端电压下降也高(10.5V),放电率大时例如1C,实际释放的容量小,但允许的电池端电压也可以低些(8V)。
  
  过度的大电流放电工作方式是不利的。在为UPS配置电池时,单凭UPS在电池逆变期间所需要的输出电流和电池供电时间来配置所用电池的标称容量是不够的,还必须根据电池逆变时的放电率和所选电池规格的输出特性,适当增大所配电池容量。

环保部日前宣布,将2013年世界环境日中国主题为“同呼吸 共奋斗”,旨在推进以防治PM2.5为重点的大气污染防治工作;倡导全社会群策群力,共同行动,积极参与到防治大气污染的行动中来。从环保部发布的一季度空气质量状况显示,今年1-3月份,中国74个城市总体达标天数比例为44.4%,首要污染物为PM2.5、PM10,其中PM2.5平均超标率为49.1%,PM10平均超标率为33.6%。环保部门表示,除了天气原因以外,此次重污染根本原因还是污染物排放大,其中,日常发电、工业生产以及汽车尾气等带来的污染物,是造成城市空气污染的主要原因。在我国大力发展信息化建设的今天,数据中心成为城市能耗“大户”,在全球IT总能耗中,数据中心就占到了40%。随着产业的快速发展,数据中心的节能减排不仅关乎经济效益,更关乎社会效益。
如何衡量数据中心能耗
 

能源使用效能值(PUE)是国际公认的衡量数据中心节能减排的一个重要指标。据最新的报道,国外最先进的数据中心的PUE值可以达到1.06,而我们国家IDC的PUE平均值则在2.5以上,这意味着IT设备每耗一度电,就有多达1.5度电被数据中心的基础设施所消耗,这一现象在中小规模数据中心中更为严重,通常其PUE的测量值普遍在3左右。这表明有大量的电能被消耗在供电系统、制冷系统等基础设施上,而用于IT设备中的电能仅为总耗电的33%。对于影响数据中心PUE值的供电、制冷两大基础设施而言,供电系统的能效是问题的根本,因为供电系统的低效加剧了制冷系统的负担,双倍地导致了PUE指标的攀升。而数据中心所有营运负载几乎都是通过UPS电源来供电的,因此如何进一步挖掘UPS系统的工作效率,将是快速改善数据中心供电系统乃至整个数据中心PUE指标的核心途径。

改变UPS工作模式实现节能降耗

当前数据机房UPS系统的工作模式为双变换在线工作模式,即通过“AC-DC和DC-AC的双变换”给IT负载提供稳定的净化电源。但是在这一模式下,UPS的效率较低,通常满载工作效率仅90~95%(视UPS结构的不同),如果对于当前数据机房普遍采用的2N电源系统架构,其正常工作的最大负载率仅为40%左右,在这一负载率下,UPS的工作效率也相应降低,通常约为85~94%左右,这导致了能源的极大浪费并降低了整个数据中心的PUE指标。与双变换在线工作模式相反,绿色休眠在线模式的工作原理是在输入市电品质较好的情况下,将市电通过UPS旁路直接供电给数据中心的IT负载,而UPS内部的逆变器处于在线备份状态,从而使整个UPS系统的供电效率高达99%,而且这一休眠效率不受UPS负载率的影响,实现了“UPS基本不耗能”的节能降耗总目标;同时通过微秒级的快速跟踪及DSP技术,始终保持逆变器在线备份的电压、频率、相位参数完全与旁路输入同步,保证了分级切换的“不间断”。根据输入市电的品质,市电的电压与频率波动,这一UPS系统的工作可分成下列三级:第一级――绿色休眠在线模式。当市电的电压与频率波动较小时,UPS内部的整流器、逆变器、充电器均处于在线休眠状态,不仅基本不损耗电能,而且使主功率器件也处于电休眠状态,提高了这些UPS内部核心部件工作的可靠性并延长其使用寿命。第二级――双变换在线模式。当市电的电压与频率波动超限时,UPS立刻转切到整流、逆变的双变换模式,此时UPS的 40%负载工作效率通常在85~94%左右,与目前数据机房UPS的工作模式完全相同。第三级――电池放电逆变模式。当市电的电压与频率超出了UPS整流输入所允许的电压与频率范围时,UPS将关断整流器,进入电池放电工作模式,此模式下UPS的满载工作效率约为86~95%左右。根据国内典型的数据中心实际电能质量数据统计,对于进行上述分级运行的UPS系统,其一年的95%时间将运行在休眠模式,小于5%的时间工作在双变换模式,不到1%的时间工作在电池放电模式。如果以一个负载容量为5000kW的中等规模IDC机房采用老式12脉冲相控整流UPS为例,假设其40%负载率下的效率为达到了国家能效III级UPS标准的87%为计算依据,其每年的电费节约将高达460多万元。由于IT负载电源自身的稳压功能以及现代数据中心机房UPS供电系统通常具有的较好电能品质,在绝大部分市电品质良好的工作时间内继续让UPS工作在双变换模式不仅是能源的无端浪费,而且这一多余的重复变换还导致了UPS事故的高发和可靠性的大幅度下降,因此转变传统技术观念,在数据中心机房广泛采用UPS绿色休眠在线技术作为主要工作模式是大势所趋。

其典型电路是单相桥式二极管整流,直流输出侧由直流电容滤波。此类整流器的输入特性在通信用UPS标准中称为非线性负载(必须注意:不是指其他的非线性负载):

(1)输入电流波形的时间范围(波形宽度)

稳定运行时,输入的正弦波电压瞬时值增大到其峰值电压附近时,二极管才通过正向电流向电容器充电,二极管每一次的导通时间通常约占半周期的1/3(约60°)。

(2)输入电流的峰值

在较短的时间内,要使电容器充入足够的电荷,需要相对很大的电流瞬时值,例如,约为输入电流有效值的3倍。

(3)输入电流的相位

由于电流出现在电压的峰值附近,所以此电流的基波基本上与电压同相位。

(4)整流器输入侧的功率因数

由于以上分析的电流波形,可用频谱分析,含有基波、3次、5次、7次等谐波,总电流的有效值明显大于基波电流的有效值,两者数值之比的临界值取为1:0.7,这两个电流分别乘以同一个正弦电压有效值,就可得到视在功率和有功功率,相对应的功率因数也为0.7。这是通信用UPS标准中选定的临界值。实际上,较高电压(如220V)输入的整流器,其等效串联内阻明显相对较小,电流的峰值相对较大,功率因数明显较小(<0.7)。<>

1.2 有源功率因数校正的整流器

(1)市电供电系统在现有供电设备额定容量(额定视在功率)的条件下,为了输出尽可能大的有功功率,要求负载(用户)有较高的功率因数。

由于大功率半导体器件和电子电路的发展,通信用整流器的设计生产单位,设计和制造出有源功率因数校正的单相整流器。其输入电流接近于正弦波,基波相位与电源电压近于同相位。谐波含量很小,使输入功率因数很高,很接近于极限值1,如:0.98、0.99、大于0.99等。此特性非常接近于(线性的)阻性负载。

(2)谐波含量很小,对输入电压波形畸变的不良影响极小

(3)输出直流电压标称值为48V、24V的(有源功率因数校正的)通信用(单相)整流器,在通信系统生产中可靠运行,技术成熟。其产品可直接选用,其技术便于推广到各种规格的产品。

2 通信用UPS输出端适应的负载功率因数范围与额定输出功率

电源设备与负载是相辅相成的。交流电源提供稳定的交流电压有效值、频率和波形,而电流和功率因数与负载阻抗相关。但电源设备要对其所能承担的各参数的变化范围作出规定,UPS输出端与功率因数有关的特性,对负载的工作范围至关重要。若负载在运行时的相应参数超出电源设备规定的范围,而进入不安全区域时,电源设备应有相应措施,如:告警、限流、转旁路、停机等,以保护电源设备自身的安全。各种UPS输出端口的参数范围关系到它的使用范围和经济性。

2.1 功率因数有其复杂性

(1)针对UPS输出端与负载的不同,例如:普通(无输入功率因数校正)输出侧电容滤波的整流器的功率因数以0.7为分界线,也就是说,UPS输出额定容量时,若某UPS设计在输出端能承受功率因数为0.7的负载。实际的UPS不但要能承受功率因数为0.7和<0.7的负载,若ups输出端承受的功率因数的能力能高一些,即≥0.7,则会安全些。<>

负载的视在功率增大到UPS的额定容量时,功率因数应不超过0.7,负载的功率因数若低一些,即≤0.7,是安全的。

只有同时满足上述两方面的条件下,才能保证UPS中逆变器的功率半导体开关器件的功率损耗、发热、温升不进入危险状态。

(2)此UPS能否向高功率因数的负载供电呢?

此UPS能否向功率因数=1(或近于1)的负载供电呢?1远大于0.7,是不好办了吗?退一步讲,负载功率因数若是0.9、0.8又如何呢?实际上,无论功率因数多大,只要将对应于该功率因数时的允许电流值作相应的调整(例如:相应减小),都能找到安全的工作范围。因此,要用许多数据(如用表格、曲线等方式)来表示,才能表达清楚。

2.2 额定输出功率

(1)额定输出功率作为技术指标,甚为直观

对于通信用UPS来说,目前标准中采用额定输出功率作为技术指标。这就是,不论功率因数大小,只要在运行时同时注意:视在功率不超出该UPS的额定容量,输出的有功功率不超出该型号的通信用UPS所规定的额定输出功率,就可以了。

(2)额定输出功率的确定

额定输出功率应在输出有功功率规定的范围内确定:在通信用UPS标准中,具有输出有功功率指标,也可用不等式表示为

输出有功功率≥额定容量×0.7(kW/kVA)

此式若改变形式,将“额定容量”移到不等式的左下方,得到(输出有功功率/额定容量)≥0.7(kW/kVA)

可见,不等式的左边就是功率因数的计算关系(其中:输出有功功率含有其单位kW,额定容量含有其单位kVA),不等式的右边就是功率因数的最小值和功率因数的单位(即输出有功功率的单位kW与额定容量的单位kVA之比)。


高档微处理器控制
  
  新的UPS电源采用计算机数字化控制系统,使用离档微处理器(16位机,主频达16MHz,中断达28级)。由于采用了高档微处理器的控制电路,大大提高了整机的实时响应速度,使之具有很强的故障诊断能力,自身保护能力和通信能力。
  
  2.智能化的监控系统
  
  智能化的监控系统用于监视控制UPS电源的运行状态,修改UPS电源内部参数,测量各种电网参数,记录有关电网*出现的时间和有关信息,监测UPS电源各部分的工作状态和故障信息等等。
  
  3.最新的功率变换技术
  
  新一代的UPS电源采用性能、工艺成熟的IGBT功率器件,使功率变换电路的载波频率高达50kHz。变换电路频率的提高,使得用于滤波的元件电感、电容大量减少,UPS电源的效率、噪声、体积、动态响应特性和精度都有明显的提高。
  
  4.功串因数补偿技术
  
  新一代UPS电源的输入端采用功率因数补偿技术,使得UPS电源的输入功率因数达到0.98以上。
  
  5.完善的通讯功能
  
  新一代UPS电源使用计算机管理UPS电源,还可以实现异地的监控管理和快速故障诊断服务。目前市面上的ups电源主要分为第一类为后备式;第二类为在线互动式;第三类为在线双变换式;第四类为在线电压补偿式。而评判ups电源的优劣目前主要根据四类UPS的技术性能指标有四大类:
  
  1.对电网的适应能力;
  
  2.满足负载要求的UPS常规输出指标;
  
  的输出能力和可靠性;
  
  4.智能管理和通信功能。
  
  第一.要选择大功率UPS要慎重考虑UPS的输入功率因数和输入电流谐波。
  
  双逆变在线式UPS,其AC/DC逆变器多为整流滤波电路,它的输入功因数低,输入功率因数低,意味着输入无功功率大,输入谐波电流则*破坏电网,特别是三相大功率UPS这两项指标危害很大,形成所谓的电力公害,这会使由同一电网供电的变压器、电动机、电容器等产生附加谐波损耗、过热、加速老化,引起异步电动机转矩降低,振动加剧噪声增大,引起继电器和自动装置误动作,其次谐波对通讯线路、测量仪器产生辐射*,影响电能计量的精度等
  
  第二.要考虑UPS的输出能力与可靠性。
  
  输出功率因数、输出电流波峰系数、输出过载能力、输出不平衡负载的能力等指标,直接反映了UPS的输出能力,同时也说明了UPS输出能力的局限性和脆弱的一面,尽管在配置UPS容量时尽可以使负载满足UPS的要求,甚至留出很大的余量,但这些指标却直接反映了UPS的可靠性。过载能力强,允许输出电流波峰系数高的,对负载功率因数限制小的,在同样电网环境和负载条件运行,其可靠性必然高。
  
  第三.要考虑效率与可靠性
  
  当UPS的工作效率高时,意味着节省电能,这是绿色电源的标志之一。但还应该注意到效率与可靠性是密切相关的,效率高意味着电路技术先进,元器件选用得好,意味着功器件功率损耗小,功率强度小,温度低,这必然会增强元器件乃至整机的寿命和可靠性。 厂商在配置蓄电池时,所选用的设计容量是完全满足甚至超过负载不停电供电的功率容量和供电时间要求的,但是在UPS投入运行后,用户常常发现在市电停电后UPS不停电供电的实际时间远小于设计值,造成这种现象的原因,大多数情况下并不是最初配置时蓄电池的备用容量不够,而是蓄电池的容量没有发挥出来。造成蓄电池实际容量降低的原因很多,有电池质量问题,但更多的是使用和维护问题
  
  (1)电池容量
  
  铅酸蓄电池的极板在制造过程中,对生极板进行充电化成,便正极板上的铅变成二氧化铅,负极板上的铅变为海绵状铅,但是制造厂商对极板进行化成的时间有限,不可能将所有的物质均转化成活性物质,为此,国家标准规定新电池达到90%容量为合格,只有在随后的日常使用中,容量逐渐达到正常值,安装两年后要求达到100%。
  
  电池组的额定容量是在规定的放电率下得出的,例如,UPS电源中所用的小型蓄电池的典型规格之一是l2V、6Ah/2Ohv,此规格定义为输出直流电压l2V,标称容量为6Ah,放电率条件为20hr。具体含意是:把输出直流电压l2V的电池组置于以20H恒放电率条件下进行放电,一直放到其输出电压由l2V降到l0.5V时,所测到的总安时数应为6Ah。
  
  我国、日本、德国工业用电池采用10小时率(表示为C10),美国工业用电池标准为8小时率(表示为C8,)。在实际使用时,其放电率并不等于标准容量规定的放电率,当实际放电率大于标称容量规定的放电率时,其实际输出的容量要小于标称容量。
  
  我国电力、邮电标准规定,10小时率电池,当采用1小时率放电时,其容量为标称容量的55%,即0.55C10。日本工业标准规定2V/10小时率电池,1小时率时容量为0.65C10,6V、12V,10小时率电池,1小时率容量为0.6C10。20小时率电池,10小时率容量为0.93C20,1小时率容量为0.56C20。
  
  蓄电池的寿命有两种表达方法:一种为深循环使用的电池,另一种为浮充使用的&#39;备用电源&#39;电池。深循环使用的电池以深循环次数来表示其使用寿命,以0.8C10深度充放电循环使用的电池,其寿命达到1200次以上,而浮充使用的电池,年限可达到10~20年。蓄电池只有80%容量时认为寿命终止。
  
  实际使用寿命与设计使用寿命有很大差别,这主要取决于电池中水的损失情况。在设计条件下使用可达到设计寿命,而当外部条件如温度、充电电压、放电深度等变化超出设计要求时,实际使用寿命会大大低于设计寿命,实际使用容量也会低于设计容量。
  
  (2)放电率对电池实际可输出容量的影响
  
  电池容量C(Ah)等于放电电流(A)与电池电压达到下限值的放电时间(h)的乘积,而放电率(1/h)是实际放电电流(A)与电池标称容量(Ah)的比值。
  
  在UPS的实际运行中,市电掉电后,要求电池逆变承担全部的负载功率,放电率视后备时间的不同而有很大差别,例如标机在1Omin左右,维持时间很短,放电率很大,长延时机可达4h或8h,放电率很小。所以蓄电池的实际放电率并非蓄电池规格定义中的放电率,图5-1所示的放电曲线反映了不同的放电率对电池容量的影响。
  
  由图5-1中曲线可知,屯池的实际放电电流越小,电池的电压能维持的稳定时间越长,反之亦然。例如,对1OOHR电池组而言,当放电电流为5A时,放电率为5C,其输出电压维持在12V以上的时间长达10h以上,当电池电压下降到临界电压10.5V时,放电时间可达2Oh,电池释放的容量基本上是它的标称容量。若将放电电流增大至1OOA,放电率为1C,则输出电压维持在l2V以上的时间不到1Omin。当电池电压下降到临界电压时,可维持放电时间超过3Omin,实际放出的容量为左右,远低于标称容量1OOAh。
  
  电池组允许的放电临界电压值和实际可供利用的容量(AM都弓电池的放电电流大小有密切的关系。
  
  蓄电池所允许放电时间为电池在实际放电电流下进行放电时,电池电压从额定值下降到它所允许的临界电压时所用的时间。
  
  蓄电池可供使用的效率为它在实际放电电流下所能释放出的实际最大容量与它的额定容量的比值。
  
  要注意在不同的放电率情况下,电池端电压下降的临界值也在变化,放电率低时,例如0.01C时,实际释放的容量接近标称容量,所允许的电池端电压下降也高(10.5V),放电率大时例如1C,实际释放的容量小,但允许的电池端电压也可以低些(8V)。
  
  过度的大电流放电工作方式是不利的。在为UPS配置电池时,单凭UPS在电池逆变期间所需要的输出电流和电池供电时间来配置所用电池的标称容量是不够的,还必须根据电池逆变时的放电率和所选电池规格的输出特性,适当增大所配电池容量。

 

第一.要选择大功率UPS要慎重考虑UPS的输入功率因数和输入电流谐波。
  
  双逆变在线式UPS,其AC/DC逆变器多为整流滤波电路,它的输入功因数低,输入功率因数低,意味着输入无功功率大,输入谐波电流则*破坏电网,特别是三相大功率UPS这两项指标危害很大,形成所谓的电力公害,这会使由同一电网供电的变压器、电动机、电容器等产生附加谐波损耗、过热、加速老化,引起异步电动机转矩降低,振动加剧噪声增大,引起继电器和自动装置误动作,其次谐波对通讯线路、测量仪器产生辐射*,影响电能计量的精度等
  
  第二.要考虑UPS的输出能力与可靠性。
  
  输出功率因数、输出电流波峰系数、输出过载能力、输出不平衡负载的能力等指标,直接反映了UPS的输出能力,同时也说明了UPS输出能力的局限性和脆弱的一面,尽管在配置UPS容量时尽可以使负载满足UPS的要求,甚至留出很大的余量,但这些指标却直接反映了UPS的可靠性。过载能力强,允许输出电流波峰系数高的,对负载功率因数限制小的,在同样电网环境和负载条件运行,其可靠性必然高。
  
  第三.要考虑效率与可靠性
  
  当UPS的工作效率高时,意味着节省电能,这是绿色电源的标志之一。但还应该注意到效率与可靠性是密切相关的,效率高意味着电路技术先进,元器件选用得好,意味着功器件功率损耗小,功率强度小,温度低,这必然会增强元器件乃至整机的寿命和可靠性。 厂商在配置蓄电池时,所选用的设计容量是完全满足甚至超过负载不停电供电的功率容量和供电时间要求的,但是在UPS投入运行后,用户常常发现在市电停电后UPS不停电供电的实际时间远小于设计值,造成这种现象的原因,大多数情况下并不是最初配置时蓄电池的备用容量不够,而是蓄电池的容量没有发挥出来。造成蓄电池实际容量降低的原因很多,有电池质量问题,但更多的是使用和维护问题
  
  (1)电池容量
  
  铅酸蓄电池的极板在制造过程中,对生极板进行充电化成,便正极板上的铅变成二氧化铅,负极板上的铅变为海绵状铅,但是制造厂商对极板进行化成的时间有限,不可能将所有的物质均转化成活性物质,为此,国家标准规定新电池达到90%容量为合格,只有在随后的日常使用中,容量逐渐达到正常值,安装两年后要求达到100%。
  
  电池组的额定容量是在规定的放电率下得出的,例如,UPS电源中所用的小型蓄电池的典型规格之一是l2V、6Ah/2Ohv,此规格定义为输出直流电压l2V,标称容量为6Ah,放电率条件为20hr。具体含意是:把输出直流电压l2V的电池组置于以20H恒放电率条件下进行放电,一直放到其输出电压由l2V降到l0.5V时,所测到的总安时数应为6Ah。
  
  我国、日本、德国工业用电池采用10小时率(表示为C10),美国工业用电池标准为8小时率(表示为C8,)。在实际使用时,其放电率并不等于标准容量规定的放电率,当实际放电率大于标称容量规定的放电率时,其实际输出的容量要小于标称容量。
  
  我国电力、邮电标准规定,10小时率电池,当采用1小时率放电时,其容量为标称容量的55%,即0.55C10。日本工业标准规定2V/10小时率电池,1小时率时容量为0.65C10,6V、12V,10小时率电池,1小时率容量为0.6C10。20小时率电池,10小时率容量为0.93C20,1小时率容量为0.56C20。
  
  蓄电池的寿命有两种表达方法:一种为深循环使用的电池,另一种为浮充使用的&#39;备用电源&#39;电池。深循环使用的电池以深循环次数来表示其使用寿命,以0.8C10深度充放电循环使用的电池,其寿命达到1200次以上,而浮充使用的电池,年限可达到10~20年。蓄电池只有80%容量时认为寿命终止。
  
  实际使用寿命与设计使用寿命有很大差别,这主要取决于电池中水的损失情况。在设计条件下使用可达到设计寿命,而当外部条件如温度、充电电压、放电深度等变化超出设计要求时,实际使用寿命会大大低于设计寿命,实际使用容量也会低于设计容量。
  
  (2)放电率对电池实际可输出容量的影响
  
  电池容量C(Ah)等于放电电流(A)与电池电压达到下限值的放电时间(h)的乘积,而放电率(1/h)是实际放电电流(A)与电池标称容量(Ah)的比值。
  
  在UPS的实际运行中,市电掉电后,要求电池逆变承担全部的负载功率,放电率视后备时间的不同而有很大差别,例如标机在1Omin左右,维持时间很短,放电率很大,长延时机可达4h或8h,放电率很小。所以蓄电池的实际放电率并非蓄电池规格定义中的放电率,图5-1所示的放电曲线反映了不同的放电率对电池容量的影响。
  
  由图5-1中曲线可知,屯池的实际放电电流越小,电池的电压能维持的稳定时间越长,反之亦然。例如,对1OOHR电池组而言,当放电电流为5A时,放电率为5C,其输出电压维持在12V以上的时间长达10h以上,当电池电压下降到临界电压10.5V时,放电时间可达2Oh,电池释放的容量基本上是它的标称容量。若将放电电流增大至1OOA,放电率为1C,则输出电压维持在l2V以上的时间不到1Omin。当电池电压下降到临界电压时,可维持放电时间超过3Omin,实际放出的容量为左右,远低于标称容量1OOAh。
  
  电池组允许的放电临界电压值和实际可供利用的容量(AM都弓电池的放电电流大小有密切的关系。
  
  蓄电池所允许放电时间为电池在实际放电电流下进行放电时,电池电压从额定值下降到它所允许的临界电压时所用的时间。
  
  蓄电池可供使用的效率为它在实际放电电流下所能释放出的实际最大容量与它的额定容量的比值。
  
  要注意在不同的放电率情况下,电池端电压下降的临界值也在变化,放电率低时,例如0.01C时,实际释放的容量接近标称容量,所允许的电池端电压下降也高(10.5V),放电率大时例如1C,实际释放的容量小,但允许的电池端电压也可以低些(8V)。
  
  过度的大电流放电工作方式是不利的。在为UPS配置电池时,单凭UPS在电池逆变期间所需要的输出电流和电池供电时间来配置所用电池的标称容量是不够的,还必须根据电池逆变时的放电率和所选电池规格的输出特性,适当增大所配电池容量。

环保部日前宣布,将2013年世界环境日中国主题为“同呼吸 共奋斗”,旨在推进以防治PM2.5为重点的大气污染防治工作;倡导全社会群策群力,共同行动,积极参与到防治大气污染的行动中来。从环保部发布的一季度空气质量状况显示,今年1-3月份,中国74个城市总体达标天数比例为44.4%,首要污染物为PM2.5、PM10,其中PM2.5平均超标率为49.1%,PM10平均超标率为33.6%。环保部门表示,除了天气原因以外,此次重污染根本原因还是污染物排放大,其中,日常发电、工业生产以及汽车尾气等带来的污染物,是造成城市空气污染的主要原因。在我国大力发展信息化建设的今天,数据中心成为城市能耗“大户”,在全球IT总能耗中,数据中心就占到了40%。随着产业的快速发展,数据中心的节能减排不仅关乎经济效益,更关乎社会效益。
如何衡量数据中心能耗
 

能源使用效能值(PUE)是国际公认的衡量数据中心节能减排的一个重要指标。据最新的报道,国外最先进的数据中心的PUE值可以达到1.06,而我们国家IDC的PUE平均值则在2.5以上,这意味着IT设备每耗一度电,就有多达1.5度电被数据中心的基础设施所消耗,这一现象在中小规模数据中心中更为严重,通常其PUE的测量值普遍在3左右。这表明有大量的电能被消耗在供电系统、制冷系统等基础设施上,而用于IT设备中的电能仅为总耗电的33%。对于影响数据中心PUE值的供电、制冷两大基础设施而言,供电系统的能效是问题的根本,因为供电系统的低效加剧了制冷系统的负担,双倍地导致了PUE指标的攀升。而数据中心所有营运负载几乎都是通过UPS电源来供电的,因此如何进一步挖掘UPS系统的工作效率,将是快速改善数据中心供电系统乃至整个数据中心PUE指标的核心途径。

改变UPS工作模式实现节能降耗

当前数据机房UPS系统的工作模式为双变换在线工作模式,即通过“AC-DC和DC-AC的双变换”给IT负载提供稳定的净化电源。但是在这一模式下,UPS的效率较低,通常满载工作效率仅90~95%(视UPS结构的不同),如果对于当前数据机房普遍采用的2N电源系统架构,其正常工作的最大负载率仅为40%左右,在这一负载率下,UPS的工作效率也相应降低,通常约为85~94%左右,这导致了能源的极大浪费并降低了整个数据中心的PUE指标。与双变换在线工作模式相反,绿色休眠在线模式的工作原理是在输入市电品质较好的情况下,将市电通过UPS旁路直接供电给数据中心的IT负载,而UPS内部的逆变器处于在线备份状态,从而使整个UPS系统的供电效率高达99%,而且这一休眠效率不受UPS负载率的影响,实现了“UPS基本不耗能”的节能降耗总目标;同时通过微秒级的快速跟踪及DSP技术,始终保持逆变器在线备份的电压、频率、相位参数完全与旁路输入同步,保证了分级切换的“不间断”。根据输入市电的品质,市电的电压与频率波动,这一UPS系统的工作可分成下列三级:第一级――绿色休眠在线模式。当市电的电压与频率波动较小时,UPS内部的整流器、逆变器、充电器均处于在线休眠状态,不仅基本不损耗电能,而且使主功率器件也处于电休眠状态,提高了这些UPS内部核心部件工作的可靠性并延长其使用寿命。第二级――双变换在线模式。当市电的电压与频率波动超限时,UPS立刻转切到整流、逆变的双变换模式,此时UPS的 40%负载工作效率通常在85~94%左右,与目前数据机房UPS的工作模式完全相同。第三级――电池放电逆变模式。当市电的电压与频率超出了UPS整流输入所允许的电压与频率范围时,UPS将关断整流器,进入电池放电工作模式,此模式下UPS的满载工作效率约为86~95%左右。根据国内典型的数据中心实际电能质量数据统计,对于进行上述分级运行的UPS系统,其一年的95%时间将运行在休眠模式,小于5%的时间工作在双变换模式,不到1%的时间工作在电池放电模式。如果以一个负载容量为5000kW的中等规模IDC机房采用老式12脉冲相控整流UPS为例,假设其40%负载率下的效率为达到了国家能效III级UPS标准的87%为计算依据,其每年的电费节约将高达460多万元。由于IT负载电源自身的稳压功能以及现代数据中心机房UPS供电系统通常具有的较好电能品质,在绝大部分市电品质良好的工作时间内继续让UPS工作在双变换模式不仅是能源的无端浪费,而且这一多余的重复变换还导致了UPS事故的高发和可靠性的大幅度下降,因此转变传统技术观念,在数据中心机房广泛采用UPS绿色休眠在线技术作为主要工作模式是大势所趋。

其典型电路是单相桥式二极管整流,直流输出侧由直流电容滤波。此类整流器的输入特性在通信用UPS标准中称为非线性负载(必须注意:不是指其他的非线性负载):

(1)输入电流波形的时间范围(波形宽度)

稳定运行时,输入的正弦波电压瞬时值增大到其峰值电压附近时,二极管才通过正向电流向电容器充电,二极管每一次的导通时间通常约占半周期的1/3(约60°)。

(2)输入电流的峰值

在较短的时间内,要使电容器充入足够的电荷,需要相对很大的电流瞬时值,例如,约为输入电流有效值的3倍。

(3)输入电流的相位

由于电流出现在电压的峰值附近,所以此电流的基波基本上与电压同相位。

(4)整流器输入侧的功率因数

由于以上分析的电流波形,可用频谱分析,含有基波、3次、5次、7次等谐波,总电流的有效值明显大于基波电流的有效值,两者数值之比的临界值取为1:0.7,这两个电流分别乘以同一个正弦电压有效值,就可得到视在功率和有功功率,相对应的功率因数也为0.7。这是通信用UPS标准中选定的临界值。实际上,较高电压(如220V)输入的整流器,其等效串联内阻明显相对较小,电流的峰值相对较大,功率因数明显较小(<0.7)。<>

1.2 有源功率因数校正的整流器

(1)市电供电系统在现有供电设备额定容量(额定视在功率)的条件下,为了输出尽可能大的有功功率,要求负载(用户)有较高的功率因数。

由于大功率半导体器件和电子电路的发展,通信用整流器的设计生产单位,设计和制造出有源功率因数校正的单相整流器。其输入电流接近于正弦波,基波相位与电源电压近于同相位。谐波含量很小,使输入功率因数很高,很接近于极限值1,如:0.98、0.99、大于0.99等。此特性非常接近于(线性的)阻性负载。

(2)谐波含量很小,对输入电压波形畸变的不良影响极小

(3)输出直流电压标称值为48V、24V的(有源功率因数校正的)通信用(单相)整流器,在通信系统生产中可靠运行,技术成熟。其产品可直接选用,其技术便于推广到各种规格的产品。

2 通信用UPS输出端适应的负载功率因数范围与额定输出功率

电源设备与负载是相辅相成的。交流电源提供稳定的交流电压有效值、频率和波形,而电流和功率因数与负载阻抗相关。但电源设备要对其所能承担的各参数的变化范围作出规定,UPS输出端与功率因数有关的特性,对负载的工作范围至关重要。若负载在运行时的相应参数超出电源设备规定的范围,而进入不安全区域时,电源设备应有相应措施,如:告警、限流、转旁路、停机等,以保护电源设备自身的安全。各种UPS输出端口的参数范围关系到它的使用范围和经济性。

2.1 功率因数有其复杂性

(1)针对UPS输出端与负载的不同,例如:普通(无输入功率因数校正)输出侧电容滤波的整流器的功率因数以0.7为分界线,也就是说,UPS输出额定容量时,若某UPS设计在输出端能承受功率因数为0.7的负载。实际的UPS不但要能承受功率因数为0.7和<0.7的负载,若ups输出端承受的功率因数的能力能高一些,即≥0.7,则会安全些。<>

负载的视在功率增大到UPS的额定容量时,功率因数应不超过0.7,负载的功率因数若低一些,即≤0.7,是安全的。

只有同时满足上述两方面的条件下,才能保证UPS中逆变器的功率半导体开关器件的功率损耗、发热、温升不进入危险状态。

(2)此UPS能否向高功率因数的负载供电呢?

此UPS能否向功率因数=1(或近于1)的负载供电呢?1远大于0.7,是不好办了吗?退一步讲,负载功率因数若是0.9、0.8又如何呢?实际上,无论功率因数多大,只要将对应于该功率因数时的允许电流值作相应的调整(例如:相应减小),都能找到安全的工作范围。因此,要用许多数据(如用表格、曲线等方式)来表示,才能表达清楚。

2.2 额定输出功率

(1)额定输出功率作为技术指标,甚为直观

对于通信用UPS来说,目前标准中采用额定输出功率作为技术指标。这就是,不论功率因数大小,只要在运行时同时注意:视在功率不超出该UPS的额定容量,输出的有功功率不超出该型号的通信用UPS所规定的额定输出功率,就可以了。

(2)额定输出功率的确定

额定输出功率应在输出有功功率规定的范围内确定:在通信用UPS标准中,具有输出有功功率指标,也可用不等式表示为

输出有功功率≥额定容量×0.7(kW/kVA)

此式若改变形式,将“额定容量”移到不等式的左下方,得到(输出有功功率/额定容量)≥0.7(kW/kVA)

可见,不等式的左边就是功率因数的计算关系(其中:输出有功功率含有其单位kW,额定容量含有其单位kVA),不等式的右边就是功率因数的最小值和功率因数的单位(即输出有功功率的单位kW与额定容量的单位kVA之比)。

 

 

 


该公司其他信息
最新供求信息 企业产品推荐

暂无产品
  在线询盘/留言 请仔细填写准确及时的联系到你!  
您的姓名:
* 预计需求数量: *
联系手机:
*  移动电话或传真:
电子邮件:
* 所在单位:
咨询内容:
*
           您要求厂家给您提供:
  • 规格,型号
  • 价格及付款条件
  • 产品目录
  • 最低订货量
  • 运送资料
  • 提供样本
  • 库存情况
  • 包装材料