联系我们

联系人:刘奇()

联系手机:15589443000

固定电话:89443000

企业邮箱:3036873330@qq.com

联系我时,请说是在汽配名企网上看到的,谢谢!

今日最新资讯
热门资讯
汽配名企网资讯
    理士蓄电池结构原理特点及使用注意事项
    发布者:hydskj  发布时间:2017-05-22 09:47:16  访问次数:45

    理士蓄电池结构原理特点及使用注意事项



    理士蓄电池结构原理特点及使用注意事项

    理士蓄电池[ 极板 ] 由特殊的铅钙银合金板栅以及涂在其上的正极活性物质组成。

    理士蓄电池 [ 负极板 ] 由铅钙银系列合金板栅以及涂在其上的负极活性物质组成。  

    理士蓄电池 [ 隔板 ] 采用具有很高贮酸能力的超细玻璃纤维隔板,其吸酸量足够参与正负极电化学反应所需的电解液量。

    理士蓄电池 [ 电解液 ] 含有特殊添加剂的稀硫酸电解液,并且全部被吸附在隔板中,电池中无流动酸。

    理士蓄电池 [ 安全阀 ] 由耐酸抗老化的聚合橡胶制成,自动排放电池内部过多的气体,并保持电池内部气压在安全范围。

    理士蓄电池 [ 外壳及上盖 ] 全部由高强度,耐撞击的ABS塑料制成。

    理士蓄电池 [ 端子 ] 由表面镀银的铜或铅合金制成,并采用最新的密封结构和技术。

     

     

    密封原理: 

    铅酸电池的电化学反应可用下式表示:

    PbO2+2H2SO4+Pb

     

    PbSO4+2H2O+PbSO4

    (二氧化铅) (硫酸) (海棉状铅) (硫酸铅) () (硫酸铅)

    电解液 电解液

    正级活物质 负极活物质

    正极放电产物 负极放电产物

    普通的铅酸蓄电池,在充电后期,将会发生水分解反应,即从正极产生氧气,负极产生氢气,并扩散到空气中去,因此需经常补加水来补偿电解液的损失。 然后在我们的VRLA电池中,充电中正极产生的氧气在负极被复合,即所谓的氧循环氧复合

    在正极:

    在负极:

    H2O

     

    2H++1/2O2+2e-

    Pb+1/2O2+H2SO4

     

    PbSO4+H2O

    PbSO4+2H++2e-

     

    Pb+ H 2SO4

    在上述循环中,其净结果是正极水分解,在负极又重新生成水,具体表述如下:  电池中电解液采取贪液状态,即超细玻璃纤维隔板中留有5%左右的微孔作为气体通道不被电解液占有。充电时,正极水分解产生的氧气就会沿着气道扩散到负极,与负极海棉状铅发生反应,生成的水又返回电解液中。同时生成的硫酸铅在充电中又转化为铅。氧气在负极被复合同时,又拟制了氢气在负极的产生,这就是VRLA电池可实现密封和免维护的原因。

    理士电池特点:

    1、理士蓄电池免补水、维护简单

    采用特殊设计克服了电池在充电过程中电解失水的现象,电池在使用过程中电液体积和比重几乎没有变化,因此电池在使用寿命期间完全无需补水,维护简单。

    2、理士蓄电池密封安全、安装简单

    电池内没有流动的电液,电池立式、侧卧安装使用均可,无电液渗漏之患,而且在正常充电过程中电池不会产生酸雾。因此可将电池安装在办公室或配套设备房内,而无需另建专用电池房,降低工程造价。

    3、理士蓄电池使用寿命长

    采用了耐腐性良好的铅钙合金板栅,在25℃的环境温度下,正常浮充寿命可达10年以上。

    4、理士蓄电池高功率放电性能好

    采用了内阻值很小的优质极板和玻纤隔板,而且装配较紧,使得电池内阻极小。在-40~60℃温度范围内进行大电流放电,其输出功率比常规电池可高出15%左右。

    5、理士蓄电池安装使用方便

     

    电池出厂时已经完全充电,用户拿到电池后即可安装投入使用。

     

     

    理士蓄电池注意事项:

    1、不得企图拆卸和组装电池,若因机械损坏电池致使硫酸沾到了皮肤或衣服上,立即用清水清洗,如果溅入眼睛,要尽快用大量的清水冲洗并立即找医生治疗。

    2、不得将不同厂家的电池或新旧程度相差很大的电池混合在一组电池中使用,否则可能会导致电池的损坏。

    3、最好不要将电池并联进行充放电,否则可能会缩短电池使用寿命。

    4、如果电池需要储存,应先将电池充足电后再与充电设备分离,然后将电池储存在阴凉 干燥、通风、清洁的地方。

    5、不要使用有机溶剂而可用肥皂水清洁电池,使用的抹布(棉布类)应柔软干净,不得使用可能产生静电的抹布(如化纤类)擦拭蓄电池以免发生意外。

    6、电池在火中可能发生爆炸,不得将电池丢进火中。如果由于某种原因而引起电池发生起火、爆炸时,必须使用干粉灭火器(ABC干粉)。

    7、使用后的报废电池不应乱丢,而应交回电池经销商作再生回收。

    8、若有其他事项需要帮助,请与我公司联系。

    理士铅酸蓄电池原理与构造
     所谓蓄电池即是贮存化学能量,于必要时放出电能的一种电气化学设备。 
      构成理士蓄电池之主要成份如下:  
      阳极板 ( 过氧化铅 . PbO2 )---> 活性物质 
      阴极板 ( 海绵状铅 .Pb) ---> 活性物质 
      电解液 ( 稀硫酸 ) ---> 硫酸 ( H2SO4) + 水 ( H2O) 
      电池外壳 
      隔离板 
      其它 ( 液口栓 . 盖子等 ) 
      理士蓄电池之原理
     铅蓄电池内的阳极 (PbO2) 及阴极 (Pb) 浸到电解液 ( 稀硫酸 ) 中,两极间会产生 2V 的电力,这是根据铅蓄电池原理,经由充放电,则阴阳极及电解液即会发生如下的变化: 
      ( 阳极 ) ( 电解液 ) ( 阴极 ) 
       PbO2 + 2H2SO4 + Pb ---> PbSO4 + 2H2O + PbSO4 ( 放电反应 ) 
      ( 过氧化铅 ) ( 硫酸 ) ( 海绵状铅 ) 
      ( 阳极 ) ( 电解液 ) ( 阴极 ) 
       PbSO4 + 2 H2O + PbSO4 ---> PbO2 + 2 H2SO4 + Pb ( 充电反应 ) 
      ( 硫酸铅 ) ( 水 ) ( 硫酸铅 ) 
       1. 放电中的化学变化 
       蓄电池连接外部电路放电时,稀硫酸即会与阴、阳极板上的活性物质产生反应 , 生成新化合物『硫酸铅』。经由放电硫酸成分从电解液中释出,放电愈久,硫酸浓度愈稀薄。所消耗之成份与放电量成比例,只要测得电解液中的硫酸浓度,亦即测其比重,即可得知放电量或残余电量。 


       2. 充电中的化学变化 
        由于放电时在阳极板,阴极板上所产生的硫酸铅会在充电时被分解还原成硫酸 , 铅及过氧化铅 , 因此电池内电解液的浓度逐渐增加 , 亦即电解液之比重上升,并逐渐回复到放电前的浓度,这种变化显示出蓄电池中的活性物质已还原到可以再度供电的状态,当两极的硫酸铅被还原成原来的活性物质时,即等于充电结束,而阴极板就产生氢,阳极板则产生氧,充电到最后阶段时,电流几乎都用在水的电解,因而电解液会减少,此时应以纯水补充之。

     一、理士蓄电池的安装
    蓄电池一般采用串联方式使用,即一只蓄电池的正极与另一只蓄电池的负极相连,将所有蓄电池连在一起,最后余下正负接线端子与电动车对应接线相连,电动车的电机、控制器、仪表等是蓄电池的用电负载。
    电动车一般都有电池盒,从安装位置分有斜杠式,后插式和底盘式安装,其结构形状可谓五花八门。每家电动车厂都各有特色。如图电池盒一般用工程塑料制成,其强度较好,重量较轻,安装方便。电池盒一般由底槽、上盖、蓄电池接触点及充电插座、电车锁等组成。底槽与上盖扣紧,并用自攻螺丝或螺栓紧固。电池盒是按蓄电池型号规格进行设计的,在整车设计时应考虑其良好的散热性能。
    二、理士蓄电池的充电
    “蓄电池不是用坏的而是充坏的”,这一说法绝非危言耸听,蓄电池充电性能好坏对蓄电池的使用寿命和使用性能起着举足轻重的作用,必须重视。
    1、蓄电池对充电工艺的要求
    认识蓄电池对充电工艺的基本要求,是分析各种充电技术的基础。蓄电池对充电的基本要求是:充电电流应小于或等于蓄电池可接收充电电流。否则,过剩的电流会使电解水液过快地消耗掉,产生以下危害:加大蓄电池的失水率,增加维护工作量,对于免维护电池,会造成蓄电池的早期失效;产生酸雾,造成环境污染,危害工人身体健康;使充电效率降低,造成能源的严重浪费。
    充电过程,是放电电化学反应的逆反应过程,如果充电电化学反应过程在理想的状态下进行,这个过程应该是互为逆反应,即充入的电量与放出的电量应基本相等。但在严重析气的状态下,有效充电电化学反应过程消耗的电能达不到总电量的40%,即浪费电能60%以上。
    气体的产生聚集在蓄电池多孔电极内部,减少了电解质与多孔电极的接触面积,即充电电化学反应界面大幅度减小,使充电化学反应速度降低,充电十分困难,充电时间延长。
    严重的析气会损害蓄电池:
    ①大量气体的产生对极板活性物有冲刷作用,使活性物质容易松软和脱落。
    ②在较高的极化电压下,正极板的板栅会产生严重腐蚀,生成pb02,这种腐蚀物与电化学生存的pb02是完全不同的,是一种不可逆的氧化物,导电较差,并使板栅变形,脆裂,失去骨架和导电作用。因此在充电时应尽可能防止过充电。
    长期充电不足,未反应的活性物质会产生不可逆的高阳性的大颗粒pbs04晶粒(即不可逆硫酸盐化)使蓄电池容量下降,内阻加大,充电难度加大,造成蓄电池早期损坏。因此,蓄电池要尽量保证充足电,防止不可逆硫酸盐化。
    2、充电频次的选择
    蓄电池充电深度对循环寿命影响很大,基本呈指数变化。这是由于正极活性物为pb02,其结合牢度不高,放电时转化成pbs04充电时又转化成p,而p的体积远比p体积大(其体积之比约为2:1)。因此,对正极板而言,活性物将会膨胀收缩反复进行,使其粒子之间的连接逐渐脱落,使蓄电池活性物失去放电特性成为“阳极泥”,使蓄电池性能下降,直至寿命终止。放电深度越深,膨胀收缩量越大,对活性物结合力破坏越大,寿命越短;反之则循环寿命越长。
    从理论上讲蓄电池使用时应尽量避免深放电,应做到浅放勤充,前提是有特别匹配的充电器与之匹配。但是实际使用中,由于蓄电池充电受充电器性能和蓄电池本身的离散及充电习惯及充电速度影响,充电器的电压均比较高,或多或少都存在过充电。特别是充电多数在夜间进行,时间一般在6-10小时,平均8小时左右,若是浅放电,其充电很快就会到达末期,这时充电效率变低,会产生过充电。过充电时间比较长,加上频繁充电,就会使蓄电池寿命因充电受到较大影响。
    最理想的充电要求根据实际情况而定,要参考平时运行频率、里程情况、蓄电池厂提供的说明,以及配套的充电器性能等参数制定充电频次。按绝大多数用户的情况,蓄电池以放电深度为50%-70%时充一次电最佳,这样可使蓄电池寿命达到最佳效果。实际使用时可折算成骑行里程,在需要时充一次。
    3、温度对充电的影响
    蓄电池在高温季节运行,主要存在过充电的问题。蓄电池温度增高时,各活性物质的活度增加,正极析氧电位一下降,负极析氧电位也下降(负值下降),因此,充电时充电反应速度快,充电电流大,充电时需要的充电电压较低。为防止过高的充电电压,应尽量降低蓄电池温度,保证良好散热,防止在烈日暴晒后即充电,并应远离热源。
    蓄电池在低温情况下,各活性物质活度降低,其电极上的p溶解变得困难,充电时消耗p后很难得到补充,所充电电流大幅度下降,正极板在-20℃时充电接受电流仅为常温的70%,而负极充电受膨胀剂的影响,低温充电接受能力更低,-20℃的充电接受电流仅为常温下的40%。因此,低温条件下充电主要存在充电接受能力差、充电不足的问题,要求提高充电电压和延长充电时间。改善低温性能主要应从负极着手。低温使用时应采取保温防冻措施,特别是充电时应放在温暖的环境中,有利于保证充足电,防止不可逆硫酸的产生,延长蓄电池的使用寿命。
    蓄电池的存储和使用期间,可定期进行活化充电,即所谓的均衡充电,这对防止蓄电池不可逆硫酸盐化非常有利,对蓄电池使用寿命很有好处,值得提倡。
    三、理士蓄电池的使用注意事项
    1、防止过放电
    蓄电池放电到终止电压后,继续放电称为过放电。过放电会严重损害蓄电池,对蓄电池的电气性能及循环寿命极为不利。
    蓄电池放电到终止电压时内阻较大,电解液浓度非常稀薄,特别是极板孔内及表面几乎处于中性,过放电时内阻有发热倾向,体积膨胀,放电电流较大时,明显发热(甚至出现发热变形),这时硫酸铅浓度特别大,生存晶枝短路的可能性增大,况且此时硫酸铅会结晶成较大颗粒,即形成不可逆硫酸盐化,将进一步增大内阻,充电恢复能力很差,甚至无法修复。
    蓄电池使用时应防止过放电,采取“欠压保护”是很有效的措施。另外,由于电动车“欠压保护”是由控制器控制的,但控制器以外的其他一些设备如电压表、指示灯等耗电电器是由蓄电池直接供电的,其电源的供给一般不受控制器控制,电动车锁(开关)一旦合上就开始用电。虽然电流小,但若长时间放电(1-2周)就会出现过放电。因此,不得长时间开锁,不用时应立即关掉。
    2、防止过充电
    前面已经对过充电进行了阐述,过充电会加大蓄电池的水损失,会加速板栅腐蚀,活性物质软化,会增加蓄电池变形的几率。应尽量避免过充电的发生;选择充电器参数要与蓄电池良好匹配,要充分了解蓄电池在高温季节的运行状况,以及整个使用寿命期间的变化情况。使用时不要将蓄电池置于过热环境中,特别是充电时应远离热源。蓄电池受热后要采取降温措施,待蓄电池温度恢复正常时方可进行充电。蓄电池的安装位置应尽可能保证良好散热,发现过热时应停止充电,应对充电器和蓄电池进行检查。蓄电池放电深度较浅时或环境温度偏高时应缩短充电时间。
    3、防止短路
    蓄电池在短路状态时,其短路电流可达数百安培。短路接触越牢,短路电流越大,因此所有连接部分都会产生大量热量,在薄弱环节发热量更大,会将连接处熔断,产生短路现象。蓄电池局部可能产生可爆气体(或充电时集存的可爆气体),在连接处熔断时产生火花,会引起蓄电池爆炸;若蓄电池短路时间较短或电流不是特别大时,可能不会引起连接处熔断现象,但短路仍会有过热现象,会损坏连接条周围的粘结剂,使其留下漏液等隐患。因此,蓄电池绝对不能有短路产生,在安装或使用时应特别小心,所用工具应采取绝缘措施,连线时应先将电池以外的电器连好,经检查无短路,最后连上蓄电池,布线规范应良好绝缘,防止重叠受压产生破裂。
    4、防止连接松动和不牢
    若接触不牢,程度较轻,会发生导电不良,使其线路接触部位发热,线路损耗较大,输出电压偏低,影响电机功率,使行驶里程减少或不能正常骑行;若在接线端子部件接触不牢(绝大多数故障是在接线端与连线接头部位),端子会大量发热,影响端子与密封胶的结合,时间一长就会发生漏液“爬酸”现象。若在行驶过程或充电过程中出现接触不牢,可能产生断路,断路时会产生强烈的火花,可能点爆蓄电池内部的可爆气体(特别是刚充好电的蓄电池,因电池内可爆气体较多,且蓄电池电量足,断路时火花较强烈,爆炸的可能性相当大。)
    电动车在运行时要承受较为强烈的振动,因此,应对所有连接的可靠性进行考核,接插件应带“自锁”功能,防止振动和拉动时脱落,对与蓄电池接线片的连线应采取接插件,并用焊锡将其焊牢,接插件与连线应用压接方式(也可压接后再用焊锡焊一遍增加可靠性)。

免责声明:汽配名企网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
0571-87774297